romulus_go/src/romulus_m_reference.go

573 lines
11 KiB
Go
Raw Normal View History

2022-02-04 01:10:16 +00:00
package src
2022-02-05 01:45:46 +00:00
// Converted to go with C2GO, tweaks by 51m0n - 2022.
2022-02-04 01:10:16 +00:00
/*
* Date: 05 May 2021
* Contact: Romulus Team (Mustafa Khairallah - mustafa.khairallah@ntu.edu.sg)
* Romulus-M as compliant with the Romulus v1.3 specifications.
* This file icludes the functions of Romulus-N
* It superseeds earlier versions developed by Mustafa Khairallah and maintained
* by Mustafa Khairallah, Thomas Peyrin and Kazuhiko Minematsu
*/
// Padding function: pads the byte length of the message mod 16 to the last incomplete block.
// For complete blocks it returns the same block.
func pad(m []byte, mp []byte, l int, len8 int) {
var i int
for i = 0; i < l; i++ {
if i < len8 {
mp[i] = m[i]
} else if i == l-1 {
mp[i] = byte(len8 & 0x0f)
} else {
mp[i] = 0x00
}
}
}
// G(S): generates the key stream from the internal state by multiplying the state S by the constant matrix G
func g8A(s []byte, c []byte) {
var i int
for i = 0; i < 16; i++ {
c[i] = (s[i] >> 1) ^ (s[i] & 0x80) ^ ((s[i] & 0x01) << 7)
}
}
// Rho(S,A) pads an A block and XORs it to the internal state.
func rho_ad(m []byte, s []byte, len8 int, ver int) {
var i int
var mp [16]byte
pad(m, mp[:], ver, len8)
for i = 0; i < ver; i++ {
s[i] = s[i] ^ mp[i]
}
}
// Rho(S,M): pads an M block and outputs S'= M xor S and C = M xor G(S)
func rho(m []byte, c []byte, s []byte, len8 int, ver int) {
var i int
var mp [16]byte
pad(m, mp[:], ver, len8)
g8A(s, c)
for i = 0; i < ver; i++ {
s[i] = s[i] ^ mp[i]
if i < len8 {
c[i] = c[i] ^ mp[i]
} else {
c[i] = 0
}
}
}
// Inverse-Rho(S,M): pads a C block and outputs S'= C xor G(S) xor S and M = C xor G(S)
func irho(m []byte, c []byte, s []byte, len8 int, ver int) {
var i int
var cp [16]byte
pad(c, cp[:], ver, len8)
g8A(s, m)
for i = 0; i < ver; i++ {
if i < len8 {
s[i] = s[i] ^ cp[i] ^ m[i]
} else {
s[i] = s[i] ^ cp[i]
}
if i < len8 {
m[i] = m[i] ^ cp[i]
} else {
m[i] = 0
}
}
}
// Resets the value of the counter.
func reset_lfsr_gf56(CNT []byte) {
CNT[0] = 0x01
CNT[1] = 0x00
CNT[2] = 0x00
CNT[3] = 0x00
CNT[4] = 0x00
CNT[5] = 0x00
CNT[6] = 0x00
}
// Applies CNT'=2 * CNT (mod GF(2^56)), where GF(2^56) is defined using the irreducible polynomial
// x^56 + x^7 + x^4 + x^2 + 1
func lfsr_gf56(CNT []byte) {
var fb0 byte
fb0 = CNT[6] >> 7
CNT[6] = CNT[6]<<1 | CNT[5]>>7
CNT[5] = CNT[5]<<1 | CNT[4]>>7
CNT[4] = CNT[4]<<1 | CNT[3]>>7
CNT[3] = CNT[3]<<1 | CNT[2]>>7
CNT[2] = CNT[2]<<1 | CNT[1]>>7
CNT[1] = CNT[1]<<1 | CNT[0]>>7
if fb0 == 1 {
CNT[0] = (CNT[0] << 1) ^ 0x95
} else {
CNT[0] = CNT[0] << 1
}
}
// Combines the secret key, nonce (or A block), counter and domain bits to form the full 384-bit tweakey
func compose_tweakey(KT []byte, K []byte, T []byte, CNT []byte, D byte, t int) {
var i int
for i = 0; i < 7; i++ {
KT[i] = CNT[i]
}
KT[i] = D
for i = 8; i < 16; i++ {
KT[i] = 0x00
}
for i = 0; i < t; i++ {
KT[i+16] = T[i]
}
for i = 0; i < 16; i++ {
KT[i+16+t] = K[i]
}
}
// An interface between Romulus and the underlying TBC
func block_cipher(s []byte, k []byte, T []byte, CNT []byte, D byte, t int) {
var KT [48]byte
compose_tweakey(KT[:], k, T, CNT, D, t)
skinny_128_384_plus_enc(s, KT[:])
}
// Calls the TBC using the nonce as part of the tweakey
func nonce_encryption(N []byte, CNT []byte, s []byte, k []byte, t int, D byte) {
var T [16]byte
var i int
for i = 0; i < t; i++ {
T[i] = N[i]
}
block_cipher(s, k, T[:], CNT, D, t)
}
// Generates the tag T from the final state S by applying T=G(S).
func generate_tag(c *[]byte, s []byte, n int, clen *uint64) {
g8A(s, *c)
// For some reason im going to assert that n-clen is positive
*c = (*c)[(uint64)(n)-*clen:]
//*c = *c - *clen
}
// Absorbs and encrypts the message blocks.
func msg_encryption(M *[]byte, c *[]byte, N []byte, CNT []byte, s []byte, k []byte, n uint, t uint, D byte, mlen uint64) uint64 {
var len8 int
if mlen >= uint64(n) {
len8 = int(n)
mlen = mlen - uint64(n)
} else {
len8 = int(mlen)
mlen = 0
}
rho(*M, *c, s, len8, int(n))
*c = (*c)[len8:]
*M = (*M)[len8:]
lfsr_gf56(CNT)
nonce_encryption(N, CNT, s, k, int(t), D)
return mlen
}
// Absorbs and decrypts the ciphertext blocks.
func msg_decryption(M *[]byte, c *[]byte, N []byte, CNT []byte, s []byte, k []byte, n uint, t uint, D byte, clen uint64) uint64 {
var len8 int
if clen >= uint64(n) {
len8 = int(n)
clen = clen - uint64(n)
} else {
len8 = int(clen)
clen = 0
}
irho(*M, *c, s, len8, int(n))
*c = (*c)[len8:]
*M = (*M)[len8:]
lfsr_gf56(CNT)
nonce_encryption(N, CNT, s, k, int(t), D)
return clen
}
// Handles the special case when the number of blocks of A is odd
func ad2msg_encryption(M *[]byte, CNT []byte, s []byte, k []byte, t uint, D byte, mlen uint64) uint64 {
var T [16]byte
var len8 int
if mlen <= uint64(t) {
len8 = int(mlen)
mlen = 0
} else {
len8 = int(t)
mlen = mlen - uint64(t)
}
pad(*M, T[:], int(t), len8)
block_cipher(s, k, T[:], CNT, D, int(t))
lfsr_gf56(CNT)
*M = (*M)[len8:]
return mlen
}
// Absorbs the AD blocks.
func ad_encryption(A *[]byte, s []byte, k []byte, adlen uint64, CNT []byte, D byte, n uint, t uint) uint64 {
var T [16]byte
var len8 int
if adlen >= uint64(n) {
len8 = int(n)
adlen = adlen - uint64(n)
} else {
len8 = int(adlen)
adlen = 0
}
rho_ad(*A, s, len8, int(n))
*A = (*A)[len8:]
lfsr_gf56(CNT)
if adlen != 0 {
if adlen >= uint64(t) {
len8 = int(t)
adlen = adlen - uint64(t)
} else {
len8 = int(adlen)
adlen = 0
}
pad(*A, T[:], int(t), len8)
*A = (*A)[len8:]
block_cipher(s, k, T[:], CNT, D, int(t))
lfsr_gf56(CNT)
}
return adlen
}
func romulus_m_encrypt(c []byte, clen *uint64, m []byte, mlen uint64, ad []byte, adlen uint64, nsec []byte, npub []byte, k []byte) int {
var s [16]byte
var CNT [7]byte
var T [16]byte
var N []byte
var n uint
var t uint
var i uint
var w byte
var xlen uint64
N = npub
2022-02-05 01:45:46 +00:00
// sm
2022-02-04 01:10:16 +00:00
mstart := m[:]
cstart := c[:]
n = 16
t = 16
xlen = mlen
for i = 0; i < n; i++ {
s[i] = 0
}
reset_lfsr_gf56(CNT[:])
// Calculating the domain separation bits for the last block MAC TBC call depending on the length of M and AD
w = 48
if adlen == 0 {
w = w ^ 2
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(t) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(t) {
w = w ^ 0
} else {
w = w ^ 5
}
} else if adlen%uint64(n+t) == 0 {
w = w ^ 8
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(n) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(n) {
w = w ^ 0
} else {
w = w ^ 5
}
} else if adlen%uint64(n+t) < uint64(n) {
w = w ^ 2
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(t) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(t) {
w = w ^ 0
} else {
w = w ^ 5
}
} else if adlen%uint64(n+t) == uint64(n) {
w = w ^ 0
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(t) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(t) {
w = w ^ 0
} else {
w = w ^ 5
}
} else {
w = w ^ 10
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(n) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(n) {
w = w ^ 0
} else {
w = w ^ 5
}
}
if adlen == 0 { // AD is an empty string
lfsr_gf56(CNT[:])
} else {
for adlen > 0 {
adlen = ad_encryption(&ad, s[:], k, adlen, CNT[:], 40, n, t)
}
}
if w&8 == 0 {
xlen = ad2msg_encryption(&m, CNT[:], s[:], k, t, 44, xlen)
} else if mlen == 0 {
lfsr_gf56(CNT[:])
}
for xlen > 0 {
xlen = ad_encryption(&m, s[:], k, xlen, CNT[:], 44, n, t)
}
nonce_encryption(N, CNT[:], s[:], k, int(t), w)
// Tag generation
g8A(s[:], T[:])
m = mstart
reset_lfsr_gf56(CNT[:])
for i = 0; i < n; i = i + 1 {
s[i] = T[i]
}
n = 16
*clen = mlen + uint64(n)
if mlen > 0 {
nonce_encryption(N, CNT[:], s[:], k, int(t), 36)
for mlen > uint64(n) {
mlen = msg_encryption(&m, &c, N, CNT[:], s[:], k, n, t, 36, mlen)
}
rho(m, c, s[:], int(mlen), 16)
c = c[mlen:]
m = m[mlen:]
}
// Tag Concatenation
for i = 0; i < 16; i = i + 1 {
(c[i:])[0] = T[i]
}
c = cstart
return 0
}
func romulus_m_decrypt(m []byte, mlen *uint64, nsec []byte, c []byte, clen uint64, ad []byte, adlen uint64, npub []byte, k []byte) int {
var s [16]byte
var CNT [7]byte
var T [16]byte
var N []byte
var n uint
var t uint
var i uint
var w byte
var xlen uint64
var mauth []byte
mauth = m
N = npub
n = 16
t = 16
xlen = clen - 16
reset_lfsr_gf56(CNT[:])
for i = 0; i < 16; i++ {
T[i] = (c[clen-16+uint64(i):])[0]
}
for i = 0; i < n; i = i + 1 {
s[i] = T[i]
}
n = 16
clen = clen - 16
*mlen = clen
if clen > 0 {
nonce_encryption(N, CNT[:], s[:], k, int(t), 36)
for clen > uint64(n) {
clen = msg_decryption(&m, &c, N, CNT[:], s[:], k, n, t, 36, clen)
}
irho(m, c, s[:], int(clen), 16)
c = c[clen:]
m = m[clen:]
}
for i = 0; i < n; i++ {
s[i] = 0
}
reset_lfsr_gf56(CNT[:])
// Calculating the domain separation bits for the last block MAC TBC call depending on the length of M and AD
w = 48
if adlen == 0 {
w = w ^ 2
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(t) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(t) {
w = w ^ 0
} else {
w = w ^ 5
}
} else if adlen%uint64(n+t) == 0 {
w = w ^ 8
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(n) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(n) {
w = w ^ 0
} else {
w = w ^ 5
}
} else if adlen%uint64(n+t) < uint64(n) {
w = w ^ 2
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(t) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(t) {
w = w ^ 0
} else {
w = w ^ 5
}
} else if adlen%uint64(n+t) == uint64(n) {
w = w ^ 0
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(t) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(t) {
w = w ^ 0
} else {
w = w ^ 5
}
} else {
w = w ^ 10
if xlen == 0 {
w = w ^ 1
} else if xlen%uint64(n+t) == 0 {
w = w ^ 4
} else if xlen%uint64(n+t) < uint64(n) {
w = w ^ 1
} else if xlen%uint64(n+t) == uint64(n) {
w = w ^ 0
} else {
w = w ^ 5
}
}
if adlen == 0 { // AD is an empty string
lfsr_gf56(CNT[:])
} else {
for adlen > 0 {
adlen = ad_encryption(&ad, s[:], k, adlen, CNT[:], 40, n, t)
}
}
if w&8 == 0 {
xlen = ad2msg_encryption(&mauth, CNT[:], s[:], k, t, 44, xlen)
} else if clen == 0 {
lfsr_gf56(CNT[:])
}
for xlen > 0 {
xlen = ad_encryption(&mauth, s[:], k, xlen, CNT[:], 44, n, t)
}
nonce_encryption(N, CNT[:], s[:], k, int(t), w)
// Tag generation
g8A(s[:], T[:])
// Tag verification
for i = 0; i < 16; i++ {
if T[i] != ((c[i:])[0]) {
return -1
}
}
return 0
}