Initial working, passes tests
This commit is contained in:
commit
7729776e58
|
@ -0,0 +1,10 @@
|
|||
module romulus_m
|
||||
|
||||
go 1.17
|
||||
|
||||
require (
|
||||
github.com/davecgh/go-spew v1.1.0 // indirect
|
||||
github.com/pmezard/go-difflib v1.0.0 // indirect
|
||||
github.com/stretchr/testify v1.7.0
|
||||
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c // indirect
|
||||
)
|
|
@ -0,0 +1,10 @@
|
|||
github.com/davecgh/go-spew v1.1.0 h1:ZDRjVQ15GmhC3fiQ8ni8+OwkZQO4DARzQgrnXU1Liz8=
|
||||
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
|
||||
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
||||
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
|
||||
github.com/stretchr/testify v1.7.0 h1:nwc3DEeHmmLAfoZucVR881uASk0Mfjw8xYJ99tb5CcY=
|
||||
github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
|
||||
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
||||
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c h1:dUUwHk2QECo/6vqA44rthZ8ie2QXMNeKRTHCNY2nXvo=
|
||||
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
|
@ -0,0 +1,14 @@
|
|||
package benncgoromulus
|
||||
|
||||
/*
|
||||
Count = 1
|
||||
Key = 000102030405060708090A0B0C0D0E0F
|
||||
Nonce = 000102030405060708090A0B0C0D0E0F
|
||||
PT =
|
||||
AD =
|
||||
CT = 1866911F9E436083F788BBF27C62180A
|
||||
*/
|
||||
|
||||
func main() {
|
||||
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,84 @@
|
|||
package src
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
type testData struct {
|
||||
Name string
|
||||
Key []byte
|
||||
Nonce []byte
|
||||
// Plaintext
|
||||
PT []byte
|
||||
// Addional data
|
||||
AD []byte
|
||||
// Cipher text
|
||||
CT []byte
|
||||
}
|
||||
|
||||
var tests = loadTests()
|
||||
|
||||
func loadTests() []testData {
|
||||
var tData []testData
|
||||
dat, _ := os.ReadFile("LWC_AEAD_KAT_128_128.txt")
|
||||
scanner := bufio.NewScanner(strings.NewReader((string)(dat)))
|
||||
|
||||
var currentTest testData
|
||||
for scanner.Scan() {
|
||||
noSpace := strings.ReplaceAll(scanner.Text(), " ", "")
|
||||
split := strings.Split(noSpace, "=")
|
||||
if len(split) > 0 {
|
||||
switch split[0] {
|
||||
case "Count":
|
||||
currentTest.Name = fmt.Sprintf("Test Number %v", split[1])
|
||||
case "Key":
|
||||
currentTest.Key, _ = hex.DecodeString(split[1])
|
||||
case "Nonce":
|
||||
currentTest.Nonce, _ = hex.DecodeString(split[1])
|
||||
case "PT":
|
||||
currentTest.PT, _ = hex.DecodeString(split[1])
|
||||
case "AD":
|
||||
currentTest.AD, _ = hex.DecodeString(split[1])
|
||||
case "CT":
|
||||
currentTest.CT, _ = hex.DecodeString(split[1])
|
||||
tData = append(tData, currentTest)
|
||||
currentTest = testData{}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tData
|
||||
}
|
||||
|
||||
func TestEnc(t *testing.T) {
|
||||
|
||||
for _, r := range tests {
|
||||
t.Run(r.Name, func(t *testing.T) {
|
||||
c := make([]byte, len(r.PT)+16)
|
||||
var clen uint64
|
||||
romulus_m_encrypt(c[:], &clen, r.PT, (uint64)(len(r.PT)), r.AD, (uint64)(len(r.AD)), nil, r.Nonce, r.Key)
|
||||
assert.Equal(t, (uint64)(len(r.CT)), clen)
|
||||
assert.Equal(t, c, r.CT)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestDec(t *testing.T) {
|
||||
|
||||
for _, r := range tests {
|
||||
t.Run(r.Name, func(t *testing.T) {
|
||||
d := make([]byte, len(r.CT))
|
||||
var dlen uint64
|
||||
romulus_m_decrypt(d, &dlen, nil, r.CT, (uint64)(len(r.CT)), r.AD, (uint64)(len(r.AD)), r.Nonce, r.Key)
|
||||
assert.Equal(t, (uint64)(len(r.PT)), dlen)
|
||||
assert.Equal(t, d[:dlen], r.PT)
|
||||
})
|
||||
}
|
||||
}
|
|
@ -0,0 +1,569 @@
|
|||
package src
|
||||
|
||||
/*
|
||||
* Date: 05 May 2021
|
||||
* Contact: Romulus Team (Mustafa Khairallah - mustafa.khairallah@ntu.edu.sg)
|
||||
* Romulus-M as compliant with the Romulus v1.3 specifications.
|
||||
* This file icludes the functions of Romulus-N
|
||||
* It superseeds earlier versions developed by Mustafa Khairallah and maintained
|
||||
* by Mustafa Khairallah, Thomas Peyrin and Kazuhiko Minematsu
|
||||
*/
|
||||
|
||||
// Padding function: pads the byte length of the message mod 16 to the last incomplete block.
|
||||
// For complete blocks it returns the same block.
|
||||
func pad(m []byte, mp []byte, l int, len8 int) {
|
||||
var i int
|
||||
|
||||
for i = 0; i < l; i++ {
|
||||
if i < len8 {
|
||||
mp[i] = m[i]
|
||||
} else if i == l-1 {
|
||||
mp[i] = byte(len8 & 0x0f)
|
||||
} else {
|
||||
mp[i] = 0x00
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// G(S): generates the key stream from the internal state by multiplying the state S by the constant matrix G
|
||||
func g8A(s []byte, c []byte) {
|
||||
var i int
|
||||
|
||||
for i = 0; i < 16; i++ {
|
||||
c[i] = (s[i] >> 1) ^ (s[i] & 0x80) ^ ((s[i] & 0x01) << 7)
|
||||
}
|
||||
}
|
||||
|
||||
// Rho(S,A) pads an A block and XORs it to the internal state.
|
||||
func rho_ad(m []byte, s []byte, len8 int, ver int) {
|
||||
var i int
|
||||
var mp [16]byte
|
||||
|
||||
pad(m, mp[:], ver, len8)
|
||||
for i = 0; i < ver; i++ {
|
||||
s[i] = s[i] ^ mp[i]
|
||||
}
|
||||
}
|
||||
|
||||
// Rho(S,M): pads an M block and outputs S'= M xor S and C = M xor G(S)
|
||||
func rho(m []byte, c []byte, s []byte, len8 int, ver int) {
|
||||
var i int
|
||||
var mp [16]byte
|
||||
|
||||
pad(m, mp[:], ver, len8)
|
||||
|
||||
g8A(s, c)
|
||||
for i = 0; i < ver; i++ {
|
||||
s[i] = s[i] ^ mp[i]
|
||||
if i < len8 {
|
||||
c[i] = c[i] ^ mp[i]
|
||||
} else {
|
||||
c[i] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Inverse-Rho(S,M): pads a C block and outputs S'= C xor G(S) xor S and M = C xor G(S)
|
||||
func irho(m []byte, c []byte, s []byte, len8 int, ver int) {
|
||||
var i int
|
||||
var cp [16]byte
|
||||
|
||||
pad(c, cp[:], ver, len8)
|
||||
|
||||
g8A(s, m)
|
||||
for i = 0; i < ver; i++ {
|
||||
if i < len8 {
|
||||
s[i] = s[i] ^ cp[i] ^ m[i]
|
||||
} else {
|
||||
s[i] = s[i] ^ cp[i]
|
||||
}
|
||||
|
||||
if i < len8 {
|
||||
m[i] = m[i] ^ cp[i]
|
||||
} else {
|
||||
m[i] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Resets the value of the counter.
|
||||
func reset_lfsr_gf56(CNT []byte) {
|
||||
CNT[0] = 0x01
|
||||
CNT[1] = 0x00
|
||||
CNT[2] = 0x00
|
||||
CNT[3] = 0x00
|
||||
CNT[4] = 0x00
|
||||
CNT[5] = 0x00
|
||||
CNT[6] = 0x00
|
||||
}
|
||||
|
||||
// Applies CNT'=2 * CNT (mod GF(2^56)), where GF(2^56) is defined using the irreducible polynomial
|
||||
// x^56 + x^7 + x^4 + x^2 + 1
|
||||
func lfsr_gf56(CNT []byte) {
|
||||
var fb0 byte
|
||||
|
||||
fb0 = CNT[6] >> 7
|
||||
|
||||
CNT[6] = CNT[6]<<1 | CNT[5]>>7
|
||||
CNT[5] = CNT[5]<<1 | CNT[4]>>7
|
||||
CNT[4] = CNT[4]<<1 | CNT[3]>>7
|
||||
CNT[3] = CNT[3]<<1 | CNT[2]>>7
|
||||
CNT[2] = CNT[2]<<1 | CNT[1]>>7
|
||||
CNT[1] = CNT[1]<<1 | CNT[0]>>7
|
||||
if fb0 == 1 {
|
||||
CNT[0] = (CNT[0] << 1) ^ 0x95
|
||||
} else {
|
||||
CNT[0] = CNT[0] << 1
|
||||
}
|
||||
}
|
||||
|
||||
// Combines the secret key, nonce (or A block), counter and domain bits to form the full 384-bit tweakey
|
||||
func compose_tweakey(KT []byte, K []byte, T []byte, CNT []byte, D byte, t int) {
|
||||
var i int
|
||||
|
||||
for i = 0; i < 7; i++ {
|
||||
KT[i] = CNT[i]
|
||||
}
|
||||
|
||||
KT[i] = D
|
||||
for i = 8; i < 16; i++ {
|
||||
KT[i] = 0x00
|
||||
}
|
||||
|
||||
for i = 0; i < t; i++ {
|
||||
KT[i+16] = T[i]
|
||||
}
|
||||
|
||||
for i = 0; i < 16; i++ {
|
||||
KT[i+16+t] = K[i]
|
||||
}
|
||||
}
|
||||
|
||||
// An interface between Romulus and the underlying TBC
|
||||
func block_cipher(s []byte, k []byte, T []byte, CNT []byte, D byte, t int) {
|
||||
var KT [48]byte
|
||||
|
||||
compose_tweakey(KT[:], k, T, CNT, D, t)
|
||||
skinny_128_384_plus_enc(s, KT[:])
|
||||
}
|
||||
|
||||
// Calls the TBC using the nonce as part of the tweakey
|
||||
func nonce_encryption(N []byte, CNT []byte, s []byte, k []byte, t int, D byte) {
|
||||
var T [16]byte
|
||||
var i int
|
||||
for i = 0; i < t; i++ {
|
||||
T[i] = N[i]
|
||||
}
|
||||
|
||||
block_cipher(s, k, T[:], CNT, D, t)
|
||||
}
|
||||
|
||||
// Generates the tag T from the final state S by applying T=G(S).
|
||||
func generate_tag(c *[]byte, s []byte, n int, clen *uint64) {
|
||||
g8A(s, *c)
|
||||
// For some reason im going to assert that n-clen is positive
|
||||
*c = (*c)[(uint64)(n)-*clen:]
|
||||
//*c = *c - *clen
|
||||
}
|
||||
|
||||
// Absorbs and encrypts the message blocks.
|
||||
func msg_encryption(M *[]byte, c *[]byte, N []byte, CNT []byte, s []byte, k []byte, n uint, t uint, D byte, mlen uint64) uint64 {
|
||||
var len8 int
|
||||
|
||||
if mlen >= uint64(n) {
|
||||
len8 = int(n)
|
||||
mlen = mlen - uint64(n)
|
||||
} else {
|
||||
len8 = int(mlen)
|
||||
mlen = 0
|
||||
}
|
||||
|
||||
rho(*M, *c, s, len8, int(n))
|
||||
*c = (*c)[len8:]
|
||||
*M = (*M)[len8:]
|
||||
lfsr_gf56(CNT)
|
||||
nonce_encryption(N, CNT, s, k, int(t), D)
|
||||
return mlen
|
||||
}
|
||||
|
||||
// Absorbs and decrypts the ciphertext blocks.
|
||||
func msg_decryption(M *[]byte, c *[]byte, N []byte, CNT []byte, s []byte, k []byte, n uint, t uint, D byte, clen uint64) uint64 {
|
||||
var len8 int
|
||||
|
||||
if clen >= uint64(n) {
|
||||
len8 = int(n)
|
||||
clen = clen - uint64(n)
|
||||
} else {
|
||||
len8 = int(clen)
|
||||
clen = 0
|
||||
}
|
||||
|
||||
irho(*M, *c, s, len8, int(n))
|
||||
*c = (*c)[len8:]
|
||||
*M = (*M)[len8:]
|
||||
lfsr_gf56(CNT)
|
||||
nonce_encryption(N, CNT, s, k, int(t), D)
|
||||
return clen
|
||||
}
|
||||
|
||||
// Handles the special case when the number of blocks of A is odd
|
||||
func ad2msg_encryption(M *[]byte, CNT []byte, s []byte, k []byte, t uint, D byte, mlen uint64) uint64 {
|
||||
var T [16]byte
|
||||
var len8 int
|
||||
|
||||
if mlen <= uint64(t) {
|
||||
len8 = int(mlen)
|
||||
mlen = 0
|
||||
} else {
|
||||
len8 = int(t)
|
||||
mlen = mlen - uint64(t)
|
||||
}
|
||||
|
||||
pad(*M, T[:], int(t), len8)
|
||||
|
||||
block_cipher(s, k, T[:], CNT, D, int(t))
|
||||
lfsr_gf56(CNT)
|
||||
*M = (*M)[len8:]
|
||||
|
||||
return mlen
|
||||
}
|
||||
|
||||
// Absorbs the AD blocks.
|
||||
func ad_encryption(A *[]byte, s []byte, k []byte, adlen uint64, CNT []byte, D byte, n uint, t uint) uint64 {
|
||||
var T [16]byte
|
||||
var len8 int
|
||||
|
||||
if adlen >= uint64(n) {
|
||||
len8 = int(n)
|
||||
adlen = adlen - uint64(n)
|
||||
} else {
|
||||
len8 = int(adlen)
|
||||
adlen = 0
|
||||
}
|
||||
|
||||
rho_ad(*A, s, len8, int(n))
|
||||
*A = (*A)[len8:]
|
||||
lfsr_gf56(CNT)
|
||||
|
||||
if adlen != 0 {
|
||||
if adlen >= uint64(t) {
|
||||
len8 = int(t)
|
||||
adlen = adlen - uint64(t)
|
||||
} else {
|
||||
len8 = int(adlen)
|
||||
adlen = 0
|
||||
}
|
||||
|
||||
pad(*A, T[:], int(t), len8)
|
||||
*A = (*A)[len8:]
|
||||
block_cipher(s, k, T[:], CNT, D, int(t))
|
||||
lfsr_gf56(CNT)
|
||||
}
|
||||
|
||||
return adlen
|
||||
}
|
||||
|
||||
func romulus_m_encrypt(c []byte, clen *uint64, m []byte, mlen uint64, ad []byte, adlen uint64, nsec []byte, npub []byte, k []byte) int {
|
||||
var s [16]byte
|
||||
var CNT [7]byte
|
||||
var T [16]byte
|
||||
var N []byte
|
||||
var n uint
|
||||
var t uint
|
||||
var i uint
|
||||
var w byte
|
||||
var xlen uint64
|
||||
|
||||
N = npub
|
||||
mstart := m[:]
|
||||
cstart := c[:]
|
||||
n = 16
|
||||
t = 16
|
||||
|
||||
xlen = mlen
|
||||
|
||||
for i = 0; i < n; i++ {
|
||||
s[i] = 0
|
||||
}
|
||||
|
||||
reset_lfsr_gf56(CNT[:])
|
||||
|
||||
// Calculating the domain separation bits for the last block MAC TBC call depending on the length of M and AD
|
||||
w = 48
|
||||
|
||||
if adlen == 0 {
|
||||
w = w ^ 2
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(t) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(t) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else if adlen%uint64(n+t) == 0 {
|
||||
w = w ^ 8
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(n) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(n) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else if adlen%uint64(n+t) < uint64(n) {
|
||||
w = w ^ 2
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(t) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(t) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else if adlen%uint64(n+t) == uint64(n) {
|
||||
w = w ^ 0
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(t) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(t) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else {
|
||||
w = w ^ 10
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(n) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(n) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
}
|
||||
|
||||
if adlen == 0 { // AD is an empty string
|
||||
lfsr_gf56(CNT[:])
|
||||
} else {
|
||||
for adlen > 0 {
|
||||
adlen = ad_encryption(&ad, s[:], k, adlen, CNT[:], 40, n, t)
|
||||
}
|
||||
}
|
||||
|
||||
if w&8 == 0 {
|
||||
xlen = ad2msg_encryption(&m, CNT[:], s[:], k, t, 44, xlen)
|
||||
} else if mlen == 0 {
|
||||
lfsr_gf56(CNT[:])
|
||||
}
|
||||
|
||||
for xlen > 0 {
|
||||
xlen = ad_encryption(&m, s[:], k, xlen, CNT[:], 44, n, t)
|
||||
}
|
||||
|
||||
nonce_encryption(N, CNT[:], s[:], k, int(t), w)
|
||||
|
||||
// Tag generation
|
||||
g8A(s[:], T[:])
|
||||
|
||||
m = mstart
|
||||
|
||||
reset_lfsr_gf56(CNT[:])
|
||||
|
||||
for i = 0; i < n; i = i + 1 {
|
||||
s[i] = T[i]
|
||||
}
|
||||
|
||||
n = 16
|
||||
*clen = mlen + uint64(n)
|
||||
|
||||
if mlen > 0 {
|
||||
nonce_encryption(N, CNT[:], s[:], k, int(t), 36)
|
||||
for mlen > uint64(n) {
|
||||
mlen = msg_encryption(&m, &c, N, CNT[:], s[:], k, n, t, 36, mlen)
|
||||
}
|
||||
|
||||
rho(m, c, s[:], int(mlen), 16)
|
||||
c = c[mlen:]
|
||||
m = m[mlen:]
|
||||
}
|
||||
|
||||
// Tag Concatenation
|
||||
for i = 0; i < 16; i = i + 1 {
|
||||
(c[i:])[0] = T[i]
|
||||
}
|
||||
|
||||
c = cstart
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
func romulus_m_decrypt(m []byte, mlen *uint64, nsec []byte, c []byte, clen uint64, ad []byte, adlen uint64, npub []byte, k []byte) int {
|
||||
var s [16]byte
|
||||
var CNT [7]byte
|
||||
var T [16]byte
|
||||
var N []byte
|
||||
var n uint
|
||||
var t uint
|
||||
var i uint
|
||||
var w byte
|
||||
var xlen uint64
|
||||
var mauth []byte
|
||||
|
||||
mauth = m
|
||||
|
||||
N = npub
|
||||
|
||||
n = 16
|
||||
t = 16
|
||||
|
||||
xlen = clen - 16
|
||||
|
||||
reset_lfsr_gf56(CNT[:])
|
||||
|
||||
for i = 0; i < 16; i++ {
|
||||
T[i] = (c[clen-16+uint64(i):])[0]
|
||||
}
|
||||
|
||||
for i = 0; i < n; i = i + 1 {
|
||||
s[i] = T[i]
|
||||
}
|
||||
|
||||
n = 16
|
||||
clen = clen - 16
|
||||
*mlen = clen
|
||||
|
||||
if clen > 0 {
|
||||
nonce_encryption(N, CNT[:], s[:], k, int(t), 36)
|
||||
for clen > uint64(n) {
|
||||
clen = msg_decryption(&m, &c, N, CNT[:], s[:], k, n, t, 36, clen)
|
||||
}
|
||||
|
||||
irho(m, c, s[:], int(clen), 16)
|
||||
c = c[clen:]
|
||||
m = m[clen:]
|
||||
}
|
||||
|
||||
for i = 0; i < n; i++ {
|
||||
s[i] = 0
|
||||
}
|
||||
|
||||
reset_lfsr_gf56(CNT[:])
|
||||
|
||||
// Calculating the domain separation bits for the last block MAC TBC call depending on the length of M and AD
|
||||
w = 48
|
||||
|
||||
if adlen == 0 {
|
||||
w = w ^ 2
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(t) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(t) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else if adlen%uint64(n+t) == 0 {
|
||||
w = w ^ 8
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(n) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(n) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else if adlen%uint64(n+t) < uint64(n) {
|
||||
w = w ^ 2
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(t) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(t) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else if adlen%uint64(n+t) == uint64(n) {
|
||||
w = w ^ 0
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(t) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(t) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
} else {
|
||||
w = w ^ 10
|
||||
if xlen == 0 {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == 0 {
|
||||
w = w ^ 4
|
||||
} else if xlen%uint64(n+t) < uint64(n) {
|
||||
w = w ^ 1
|
||||
} else if xlen%uint64(n+t) == uint64(n) {
|
||||
w = w ^ 0
|
||||
} else {
|
||||
w = w ^ 5
|
||||
}
|
||||
}
|
||||
|
||||
if adlen == 0 { // AD is an empty string
|
||||
lfsr_gf56(CNT[:])
|
||||
} else {
|
||||
for adlen > 0 {
|
||||
adlen = ad_encryption(&ad, s[:], k, adlen, CNT[:], 40, n, t)
|
||||
}
|
||||
}
|
||||
|
||||
if w&8 == 0 {
|
||||
xlen = ad2msg_encryption(&mauth, CNT[:], s[:], k, t, 44, xlen)
|
||||
} else if clen == 0 {
|
||||
lfsr_gf56(CNT[:])
|
||||
}
|
||||
|
||||
for xlen > 0 {
|
||||
xlen = ad_encryption(&mauth, s[:], k, xlen, CNT[:], 44, n, t)
|
||||
}
|
||||
|
||||
nonce_encryption(N, CNT[:], s[:], k, int(t), w)
|
||||
|
||||
// Tag generation
|
||||
g8A(s[:], T[:])
|
||||
|
||||
// Tag verification
|
||||
for i = 0; i < 16; i++ {
|
||||
if T[i] != ((c[i:])[0]) {
|
||||
return -1
|
||||
}
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
|
@ -0,0 +1,228 @@
|
|||
package src
|
||||
|
||||
/*
|
||||
* Date: 11 December 2015
|
||||
* Contact: Thomas Peyrin - thomas.peyrin@gmail.com
|
||||
* Modified on 04 May 2021 by Mustafa Khairallah - Modified the code
|
||||
* to implement only the SKINNY-128-384+ encryption version of Skinny for
|
||||
* Romulus v1.3, the NIST LwC finalist.
|
||||
* mustafa.khairallah@ntu.edu.sg
|
||||
*/
|
||||
|
||||
/*
|
||||
* This file includes only the encryption function of SKINNY-128-384+ as required by Romulus-v1.3
|
||||
*/
|
||||
|
||||
// Skinny-128-384+ parameters: 128-bit block, 384-bit tweakey and 40 rounds
|
||||
var BLOCK_SIZE int = 128
|
||||
|
||||
var TWEAKEY_SIZE int = 384
|
||||
|
||||
var N_RNDS int = 40
|
||||
|
||||
// Packing of data is done as follows (state[i][j] stands for row i and column j):
|
||||
// 0 1 2 3
|
||||
// 4 5 6 7
|
||||
// 8 9 10 11
|
||||
//12 13 14 15
|
||||
|
||||
// 8-bit Sbox
|
||||
var sbox_8 = [256]byte{0x65, 0x4c, 0x6a, 0x42, 0x4b, 0x63, 0x43, 0x6b, 0x55, 0x75, 0x5a, 0x7a, 0x53, 0x73, 0x5b, 0x7b, 0x35, 0x8c, 0x3a, 0x81, 0x89, 0x33, 0x80, 0x3b, 0x95, 0x25, 0x98, 0x2a, 0x90, 0x23, 0x99, 0x2b, 0xe5, 0xcc, 0xe8, 0xc1, 0xc9, 0xe0, 0xc0, 0xe9, 0xd5, 0xf5, 0xd8, 0xf8, 0xd0, 0xf0, 0xd9, 0xf9, 0xa5, 0x1c, 0xa8, 0x12, 0x1b, 0xa0, 0x13, 0xa9, 0x05, 0xb5, 0x0a, 0xb8, 0x03, 0xb0, 0x0b, 0xb9, 0x32, 0x88, 0x3c, 0x85, 0x8d, 0x34, 0x84, 0x3d, 0x91, 0x22, 0x9c, 0x2c, 0x94, 0x24, 0x9d, 0x2d, 0x62, 0x4a, 0x6c, 0x45, 0x4d, 0x64, 0x44, 0x6d, 0x52, 0x72, 0x5c, 0x7c, 0x54, 0x74, 0x5d, 0x7d, 0xa1, 0x1a, 0xac, 0x15, 0x1d, 0xa4, 0x14, 0xad, 0x02, 0xb1, 0x0c, 0xbc, 0x04, 0xb4, 0x0d, 0xbd, 0xe1, 0xc8, 0xec, 0xc5, 0xcd, 0xe4, 0xc4, 0xed, 0xd1, 0xf1, 0xdc, 0xfc, 0xd4, 0xf4, 0xdd, 0xfd, 0x36, 0x8e, 0x38, 0x82, 0x8b, 0x30, 0x83, 0x39, 0x96, 0x26, 0x9a, 0x28, 0x93, 0x20, 0x9b, 0x29, 0x66, 0x4e, 0x68, 0x41, 0x49, 0x60, 0x40, 0x69, 0x56, 0x76, 0x58, 0x78, 0x50, 0x70, 0x59, 0x79, 0xa6, 0x1e, 0xaa, 0x11, 0x19, 0xa3, 0x10, 0xab, 0x06, 0xb6, 0x08, 0xba, 0x00, 0xb3, 0x09, 0xbb, 0xe6, 0xce, 0xea, 0xc2, 0xcb, 0xe3, 0xc3, 0xeb, 0xd6, 0xf6, 0xda, 0xfa, 0xd3, 0xf3, 0xdb, 0xfb, 0x31, 0x8a, 0x3e, 0x86, 0x8f, 0x37, 0x87, 0x3f, 0x92, 0x21, 0x9e, 0x2e, 0x97, 0x27, 0x9f, 0x2f, 0x61, 0x48, 0x6e, 0x46, 0x4f, 0x67, 0x47, 0x6f, 0x51, 0x71, 0x5e, 0x7e, 0x57, 0x77, 0x5f, 0x7f, 0xa2, 0x18, 0xae, 0x16, 0x1f, 0xa7, 0x17, 0xaf, 0x01, 0xb2, 0x0e, 0xbe, 0x07, 0xb7, 0x0f, 0xbf, 0xe2, 0xca, 0xee, 0xc6, 0xcf, 0xe7, 0xc7, 0xef, 0xd2, 0xf2, 0xde, 0xfe, 0xd7, 0xf7, 0xdf, 0xff}
|
||||
|
||||
// ShiftAndSwitchRows permutation
|
||||
var P = [16]byte{0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12}
|
||||
|
||||
// Tweakey permutation
|
||||
var TWEAKEY_P = [16]byte{9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7}
|
||||
|
||||
// round constants
|
||||
var RC = [40]byte{
|
||||
0x01,
|
||||
0x03,
|
||||
0x07,
|
||||
0x0F,
|
||||
0x1F,
|
||||
0x3E,
|
||||
0x3D,
|
||||
0x3B,
|
||||
0x37,
|
||||
0x2F,
|
||||
0x1E,
|
||||
0x3C,
|
||||
0x39,
|
||||
0x33,
|
||||
0x27,
|
||||
0x0E,
|
||||
0x1D,
|
||||
0x3A,
|
||||
0x35,
|
||||
0x2B,
|
||||
0x16,
|
||||
0x2C,
|
||||
0x18,
|
||||
0x30,
|
||||
0x21,
|
||||
0x02,
|
||||
0x05,
|
||||
0x0B,
|
||||
0x17,
|
||||
0x2E,
|
||||
0x1C,
|
||||
0x38,
|
||||
0x31,
|
||||
0x23,
|
||||
0x06,
|
||||
0x0D,
|
||||
0x1B,
|
||||
0x36,
|
||||
0x2D,
|
||||
0x1A,
|
||||
}
|
||||
|
||||
// Extract and apply the subtweakey to the internal state (must be the two top rows XORed together), then update the tweakey state
|
||||
func AddKey(state [][4]byte, keyCells [][4][4]byte) {
|
||||
var i int
|
||||
var j int
|
||||
var k int
|
||||
var pos byte
|
||||
var keyCells_tmp [3][4][4]byte
|
||||
|
||||
// apply the subtweakey to the internal state
|
||||
for i = 0; i <= 1; i++ {
|
||||
for j = 0; j < 4; j++ {
|
||||
state[i][j] ^= keyCells[0][i][j] ^ keyCells[1][i][j] ^ keyCells[2][i][j]
|
||||
}
|
||||
}
|
||||
|
||||
// update the subtweakey states with the permutation
|
||||
for k = 0; k < int(TWEAKEY_SIZE/BLOCK_SIZE); k++ {
|
||||
for i = 0; i < 4; i++ {
|
||||
for j = 0; j < 4; j++ {
|
||||
//application of the TWEAKEY permutation
|
||||
pos = TWEAKEY_P[j+4*i]
|
||||
|
||||
keyCells_tmp[k][i][j] = keyCells[k][pos>>2][pos&0x3]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// update the subtweakey states with the LFSRs
|
||||
for k = 0; k < int(TWEAKEY_SIZE/BLOCK_SIZE); k++ {
|
||||
for i = 0; i <= 1; i++ {
|
||||
for j = 0; j < 4; j++ {
|
||||
//application of LFSRs for TK updates
|
||||
if k == 1 {
|
||||
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] << 1) & 0xFE) ^ ((keyCells_tmp[k][i][j] >> 7) & 0x01) ^ ((keyCells_tmp[k][i][j] >> 5) & 0x01)
|
||||
} else if k == 2 {
|
||||
keyCells_tmp[k][i][j] = ((keyCells_tmp[k][i][j] >> 1) & 0x7F) ^ ((keyCells_tmp[k][i][j] << 7) & 0x80) ^ ((keyCells_tmp[k][i][j] << 1) & 0x80)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for k = 0; k < int(TWEAKEY_SIZE/BLOCK_SIZE); k++ {
|
||||
for i = 0; i < 4; i++ {
|
||||
for j = 0; j < 4; j++ {
|
||||
keyCells[k][i][j] = keyCells_tmp[k][i][j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply the constants: using a LFSR counter on 6 bits, we XOR the 6 bits to the first 6 bits of the internal state
|
||||
func AddConstants(state [][4]byte, r int) {
|
||||
state[0][0] ^= (RC[r] & 0xf)
|
||||
state[1][0] ^= ((RC[r] >> 4) & 0x3)
|
||||
state[2][0] ^= 0x2
|
||||
}
|
||||
|
||||
// apply the 8-bit Sbox
|
||||
func SubCell8(state [][4]byte) {
|
||||
var i int
|
||||
var j int
|
||||
for i = 0; i < 4; i++ {
|
||||
for j = 0; j < 4; j++ {
|
||||
state[i][j] = sbox_8[state[i][j]]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply the ShiftRows function
|
||||
func ShiftRows(state [][4]byte) {
|
||||
var i int
|
||||
var j int
|
||||
var pos int
|
||||
var state_tmp [4][4]byte
|
||||
for i = 0; i < 4; i++ {
|
||||
for j = 0; j < 4; j++ {
|
||||
//application of the ShiftRows permutation
|
||||
pos = int(P[j+4*i])
|
||||
|
||||
state_tmp[i][j] = state[pos>>2][pos&0x3]
|
||||
}
|
||||
}
|
||||
|
||||
for i = 0; i < 4; i++ {
|
||||
for j = 0; j < 4; j++ {
|
||||
state[i][j] = state_tmp[i][j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply the linear diffusion matrix
|
||||
//M =
|
||||
//1 0 1 1
|
||||
//1 0 0 0
|
||||
//0 1 1 0
|
||||
//1 0 1 0
|
||||
func MixColumn(state [][4]byte) {
|
||||
var j int
|
||||
var temp byte
|
||||
|
||||
for j = 0; j < 4; j++ {
|
||||
state[1][j] ^= state[2][j]
|
||||
state[2][j] ^= state[0][j]
|
||||
state[3][j] ^= state[2][j]
|
||||
|
||||
temp = state[3][j]
|
||||
state[3][j] = state[2][j]
|
||||
state[2][j] = state[1][j]
|
||||
state[1][j] = state[0][j]
|
||||
state[0][j] = temp
|
||||
}
|
||||
}
|
||||
|
||||
// encryption function of Skinny-128-384+
|
||||
func enc(input []byte, userkey []byte) {
|
||||
var state [4][4]byte
|
||||
var keyCells [3][4][4]byte
|
||||
var i int
|
||||
|
||||
//memset(keyCells, 0, 48);
|
||||
for i = 0; i < 16; i++ {
|
||||
state[i>>2][i&0x3] = input[i] & 0xFF
|
||||
keyCells[0][i>>2][i&0x3] = userkey[i] & 0xFF
|
||||
keyCells[1][i>>2][i&0x3] = userkey[i+16] & 0xFF
|
||||
keyCells[2][i>>2][i&0x3] = userkey[i+32] & 0xFF
|
||||
}
|
||||
|
||||
for i = 0; i < N_RNDS; i++ {
|
||||
SubCell8(state[:])
|
||||
|
||||
AddConstants(state[:], i)
|
||||
|
||||
AddKey(state[:], keyCells[:])
|
||||
|
||||
ShiftRows(state[:])
|
||||
|
||||
MixColumn(state[:])
|
||||
}
|
||||
|
||||
for i = 0; i < 16; i++ {
|
||||
input[i] = state[i>>2][i&0x3] & 0xFF
|
||||
}
|
||||
}
|
||||
|
||||
func skinny_128_384_plus_enc(input []byte, userkey []byte) {
|
||||
enc(input, userkey)
|
||||
}
|
Loading…
Reference in New Issue