571 lines
11 KiB
Go
571 lines
11 KiB
Go
package romulus_go
|
|
|
|
// Converted to go with C2GO, tweaks by 51m0n - 2022.
|
|
|
|
/*
|
|
* Date: 05 May 2021
|
|
* Contact: Romulus Team (Mustafa Khairallah - mustafa.khairallah@ntu.edu.sg)
|
|
* Romulus-M as compliant with the Romulus v1.3 specifications.
|
|
* This file icludes the functions of Romulus-N
|
|
* It superseeds earlier versions developed by Mustafa Khairallah and maintained
|
|
* by Mustafa Khairallah, Thomas Peyrin and Kazuhiko Minematsu
|
|
*/
|
|
|
|
// Padding function: pads the byte length of the message mod 16 to the last incomplete block.
|
|
// For complete blocks it returns the same block.
|
|
func pad(m []byte, mp []byte, l int, len8 int) {
|
|
var i int
|
|
|
|
for i = 0; i < l; i++ {
|
|
if i < len8 {
|
|
mp[i] = m[i]
|
|
} else if i == l-1 {
|
|
mp[i] = byte(len8 & 0x0f)
|
|
} else {
|
|
mp[i] = 0x00
|
|
}
|
|
}
|
|
}
|
|
|
|
// G(S): generates the key stream from the internal state by multiplying the state S by the constant matrix G
|
|
func g8A(s []byte, c []byte) {
|
|
var i int
|
|
|
|
for i = 0; i < 16; i++ {
|
|
c[i] = (s[i] >> 1) ^ (s[i] & 0x80) ^ ((s[i] & 0x01) << 7)
|
|
}
|
|
}
|
|
|
|
// Rho(S,A) pads an A block and XORs it to the internal state.
|
|
func rho_ad(m []byte, s []byte, len8 int, ver int) {
|
|
var i int
|
|
var mp [16]byte
|
|
|
|
pad(m, mp[:], ver, len8)
|
|
for i = 0; i < ver; i++ {
|
|
s[i] = s[i] ^ mp[i]
|
|
}
|
|
}
|
|
|
|
// Rho(S,M): pads an M block and outputs S'= M xor S and C = M xor G(S)
|
|
func rho(m []byte, c []byte, s []byte, len8 int, ver int) {
|
|
var i int
|
|
var mp [16]byte
|
|
|
|
pad(m, mp[:], ver, len8)
|
|
|
|
g8A(s, c)
|
|
for i = 0; i < ver; i++ {
|
|
s[i] = s[i] ^ mp[i]
|
|
if i < len8 {
|
|
c[i] = c[i] ^ mp[i]
|
|
} else {
|
|
c[i] = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
// Inverse-Rho(S,M): pads a C block and outputs S'= C xor G(S) xor S and M = C xor G(S)
|
|
func irho(m []byte, c []byte, s []byte, len8 int, ver int) {
|
|
var i int
|
|
var cp [16]byte
|
|
|
|
pad(c, cp[:], ver, len8)
|
|
|
|
g8A(s, m)
|
|
for i = 0; i < ver; i++ {
|
|
if i < len8 {
|
|
s[i] = s[i] ^ cp[i] ^ m[i]
|
|
} else {
|
|
s[i] = s[i] ^ cp[i]
|
|
}
|
|
|
|
if i < len8 {
|
|
m[i] = m[i] ^ cp[i]
|
|
} else {
|
|
m[i] = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resets the value of the counter.
|
|
func reset_lfsr_gf56(CNT []byte) {
|
|
CNT[0] = 0x01
|
|
CNT[1] = 0x00
|
|
CNT[2] = 0x00
|
|
CNT[3] = 0x00
|
|
CNT[4] = 0x00
|
|
CNT[5] = 0x00
|
|
CNT[6] = 0x00
|
|
}
|
|
|
|
// Applies CNT'=2 * CNT (mod GF(2^56)), where GF(2^56) is defined using the irreducible polynomial
|
|
// x^56 + x^7 + x^4 + x^2 + 1
|
|
func lfsr_gf56(CNT []byte) {
|
|
var fb0 byte
|
|
|
|
fb0 = CNT[6] >> 7
|
|
|
|
CNT[6] = CNT[6]<<1 | CNT[5]>>7
|
|
CNT[5] = CNT[5]<<1 | CNT[4]>>7
|
|
CNT[4] = CNT[4]<<1 | CNT[3]>>7
|
|
CNT[3] = CNT[3]<<1 | CNT[2]>>7
|
|
CNT[2] = CNT[2]<<1 | CNT[1]>>7
|
|
CNT[1] = CNT[1]<<1 | CNT[0]>>7
|
|
if fb0 == 1 {
|
|
CNT[0] = (CNT[0] << 1) ^ 0x95
|
|
} else {
|
|
CNT[0] = CNT[0] << 1
|
|
}
|
|
}
|
|
|
|
// Combines the secret key, nonce (or A block), counter and domain bits to form the full 384-bit tweakey
|
|
func compose_tweakey(KT []byte, K []byte, T []byte, CNT []byte, D byte, t int) {
|
|
var i int
|
|
|
|
for i = 0; i < 7; i++ {
|
|
KT[i] = CNT[i]
|
|
}
|
|
|
|
KT[i] = D
|
|
for i = 8; i < 16; i++ {
|
|
KT[i] = 0x00
|
|
}
|
|
|
|
for i = 0; i < t; i++ {
|
|
KT[i+16] = T[i]
|
|
}
|
|
|
|
for i = 0; i < 16; i++ {
|
|
KT[i+16+t] = K[i]
|
|
}
|
|
}
|
|
|
|
// An interface between Romulus and the underlying TBC
|
|
func block_cipher(s []byte, k []byte, T []byte, CNT []byte, D byte, t int) {
|
|
var KT [48]byte
|
|
|
|
compose_tweakey(KT[:], k, T, CNT, D, t)
|
|
skinny_128_384_plus_enc(s, KT[:])
|
|
}
|
|
|
|
// Calls the TBC using the nonce as part of the tweakey
|
|
func nonce_encryption(N []byte, CNT []byte, s []byte, k []byte, t int, D byte) {
|
|
var T [16]byte
|
|
var i int
|
|
for i = 0; i < t; i++ {
|
|
T[i] = N[i]
|
|
}
|
|
|
|
block_cipher(s, k, T[:], CNT, D, t)
|
|
}
|
|
|
|
// Generates the tag T from the final state S by applying T=G(S).
|
|
func generate_tag(c *[]byte, s []byte, n int, clen *uint64) {
|
|
g8A(s, *c)
|
|
// For some reason im going to assert that n-clen is positive
|
|
*c = (*c)[(uint64)(n)-*clen:]
|
|
//*c = *c - *clen
|
|
}
|
|
|
|
// Absorbs and encrypts the message blocks.
|
|
func msg_encryption(M *[]byte, c *[]byte, N []byte, CNT []byte, s []byte, k []byte, n uint, t uint, D byte, mlen uint64) uint64 {
|
|
var len8 int
|
|
|
|
if mlen >= uint64(n) {
|
|
len8 = int(n)
|
|
mlen = mlen - uint64(n)
|
|
} else {
|
|
len8 = int(mlen)
|
|
mlen = 0
|
|
}
|
|
|
|
rho(*M, *c, s, len8, int(n))
|
|
*c = (*c)[len8:]
|
|
*M = (*M)[len8:]
|
|
lfsr_gf56(CNT)
|
|
nonce_encryption(N, CNT, s, k, int(t), D)
|
|
return mlen
|
|
}
|
|
|
|
// Absorbs and decrypts the ciphertext blocks.
|
|
func msg_decryption(M *[]byte, c *[]byte, N []byte, CNT []byte, s []byte, k []byte, n uint, t uint, D byte, clen uint64) uint64 {
|
|
var len8 int
|
|
|
|
if clen >= uint64(n) {
|
|
len8 = int(n)
|
|
clen = clen - uint64(n)
|
|
} else {
|
|
len8 = int(clen)
|
|
clen = 0
|
|
}
|
|
|
|
irho(*M, *c, s, len8, int(n))
|
|
*c = (*c)[len8:]
|
|
*M = (*M)[len8:]
|
|
lfsr_gf56(CNT)
|
|
nonce_encryption(N, CNT, s, k, int(t), D)
|
|
return clen
|
|
}
|
|
|
|
// Handles the special case when the number of blocks of A is odd
|
|
func ad2msg_encryption(M *[]byte, CNT []byte, s []byte, k []byte, t uint, D byte, mlen uint64) uint64 {
|
|
var T [16]byte
|
|
var len8 int
|
|
|
|
if mlen <= uint64(t) {
|
|
len8 = int(mlen)
|
|
mlen = 0
|
|
} else {
|
|
len8 = int(t)
|
|
mlen = mlen - uint64(t)
|
|
}
|
|
|
|
pad(*M, T[:], int(t), len8)
|
|
|
|
block_cipher(s, k, T[:], CNT, D, int(t))
|
|
lfsr_gf56(CNT)
|
|
*M = (*M)[len8:]
|
|
|
|
return mlen
|
|
}
|
|
|
|
// Absorbs the AD blocks.
|
|
func ad_encryption(A *[]byte, s []byte, k []byte, adlen uint64, CNT []byte, D byte, n uint, t uint) uint64 {
|
|
var T [16]byte
|
|
var len8 int
|
|
|
|
if adlen >= uint64(n) {
|
|
len8 = int(n)
|
|
adlen = adlen - uint64(n)
|
|
} else {
|
|
len8 = int(adlen)
|
|
adlen = 0
|
|
}
|
|
|
|
rho_ad(*A, s, len8, int(n))
|
|
*A = (*A)[len8:]
|
|
lfsr_gf56(CNT)
|
|
|
|
if adlen != 0 {
|
|
if adlen >= uint64(t) {
|
|
len8 = int(t)
|
|
adlen = adlen - uint64(t)
|
|
} else {
|
|
len8 = int(adlen)
|
|
adlen = 0
|
|
}
|
|
|
|
pad(*A, T[:], int(t), len8)
|
|
*A = (*A)[len8:]
|
|
block_cipher(s, k, T[:], CNT, D, int(t))
|
|
lfsr_gf56(CNT)
|
|
}
|
|
|
|
return adlen
|
|
}
|
|
|
|
func romulus_m_encrypt(c []byte, clen *uint64, m []byte, mlen uint64, ad []byte, adlen uint64, nsec []byte, npub []byte, k []byte) int {
|
|
var s [16]byte
|
|
var CNT [7]byte
|
|
var T [16]byte
|
|
var N []byte
|
|
var n uint
|
|
var t uint
|
|
var i uint
|
|
var w byte
|
|
var xlen uint64
|
|
|
|
N = npub
|
|
// sm
|
|
mstart := m[:]
|
|
cstart := c[:]
|
|
n = 16
|
|
t = 16
|
|
|
|
xlen = mlen
|
|
|
|
for i = 0; i < n; i++ {
|
|
s[i] = 0
|
|
}
|
|
|
|
reset_lfsr_gf56(CNT[:])
|
|
|
|
// Calculating the domain separation bits for the last block MAC TBC call depending on the length of M and AD
|
|
w = 48
|
|
|
|
if adlen == 0 {
|
|
w = w ^ 2
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(t) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(t) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else if adlen%uint64(n+t) == 0 {
|
|
w = w ^ 8
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(n) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(n) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else if adlen%uint64(n+t) < uint64(n) {
|
|
w = w ^ 2
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(t) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(t) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else if adlen%uint64(n+t) == uint64(n) {
|
|
w = w ^ 0
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(t) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(t) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else {
|
|
w = w ^ 10
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(n) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(n) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
}
|
|
|
|
if adlen == 0 { // AD is an empty string
|
|
lfsr_gf56(CNT[:])
|
|
} else {
|
|
for adlen > 0 {
|
|
adlen = ad_encryption(&ad, s[:], k, adlen, CNT[:], 40, n, t)
|
|
}
|
|
}
|
|
|
|
if w&8 == 0 {
|
|
xlen = ad2msg_encryption(&m, CNT[:], s[:], k, t, 44, xlen)
|
|
} else if mlen == 0 {
|
|
lfsr_gf56(CNT[:])
|
|
}
|
|
|
|
for xlen > 0 {
|
|
xlen = ad_encryption(&m, s[:], k, xlen, CNT[:], 44, n, t)
|
|
}
|
|
|
|
nonce_encryption(N, CNT[:], s[:], k, int(t), w)
|
|
|
|
// Tag generation
|
|
g8A(s[:], T[:])
|
|
|
|
m = mstart
|
|
|
|
reset_lfsr_gf56(CNT[:])
|
|
|
|
for i = 0; i < n; i = i + 1 {
|
|
s[i] = T[i]
|
|
}
|
|
|
|
n = 16
|
|
*clen = mlen + uint64(n)
|
|
|
|
if mlen > 0 {
|
|
nonce_encryption(N, CNT[:], s[:], k, int(t), 36)
|
|
for mlen > uint64(n) {
|
|
mlen = msg_encryption(&m, &c, N, CNT[:], s[:], k, n, t, 36, mlen)
|
|
}
|
|
|
|
rho(m, c, s[:], int(mlen), 16)
|
|
c = c[mlen:]
|
|
m = m[mlen:]
|
|
}
|
|
|
|
// Tag Concatenation
|
|
for i = 0; i < 16; i = i + 1 {
|
|
(c[i:])[0] = T[i]
|
|
}
|
|
|
|
c = cstart
|
|
|
|
return 0
|
|
}
|
|
|
|
func romulus_m_decrypt(m []byte, mlen *uint64, nsec []byte, c []byte, clen uint64, ad []byte, adlen uint64, npub []byte, k []byte) int {
|
|
var s [16]byte
|
|
var CNT [7]byte
|
|
var T [16]byte
|
|
var N []byte
|
|
var n uint
|
|
var t uint
|
|
var i uint
|
|
var w byte
|
|
var xlen uint64
|
|
var mauth []byte
|
|
|
|
mauth = m
|
|
|
|
N = npub
|
|
|
|
n = 16
|
|
t = 16
|
|
|
|
xlen = clen - 16
|
|
|
|
reset_lfsr_gf56(CNT[:])
|
|
|
|
copy(T[:], c[len(c)-len(T):])
|
|
|
|
for i = 0; i < n; i = i + 1 {
|
|
s[i] = T[i]
|
|
}
|
|
|
|
n = 16
|
|
clen = clen - 16
|
|
*mlen = clen
|
|
|
|
if clen > 0 {
|
|
nonce_encryption(N, CNT[:], s[:], k, int(t), 36)
|
|
for clen > uint64(n) {
|
|
clen = msg_decryption(&m, &c, N, CNT[:], s[:], k, n, t, 36, clen)
|
|
}
|
|
|
|
irho(m, c, s[:], int(clen), 16)
|
|
c = c[clen:]
|
|
m = m[clen:]
|
|
}
|
|
|
|
for i = 0; i < n; i++ {
|
|
s[i] = 0
|
|
}
|
|
|
|
reset_lfsr_gf56(CNT[:])
|
|
|
|
// Calculating the domain separation bits for the last block MAC TBC call depending on the length of M and AD
|
|
w = 48
|
|
|
|
if adlen == 0 {
|
|
w = w ^ 2
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(t) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(t) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else if adlen%uint64(n+t) == 0 {
|
|
w = w ^ 8
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(n) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(n) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else if adlen%uint64(n+t) < uint64(n) {
|
|
w = w ^ 2
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(t) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(t) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else if adlen%uint64(n+t) == uint64(n) {
|
|
w = w ^ 0
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(t) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(t) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
} else {
|
|
w = w ^ 10
|
|
if xlen == 0 {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == 0 {
|
|
w = w ^ 4
|
|
} else if xlen%uint64(n+t) < uint64(n) {
|
|
w = w ^ 1
|
|
} else if xlen%uint64(n+t) == uint64(n) {
|
|
w = w ^ 0
|
|
} else {
|
|
w = w ^ 5
|
|
}
|
|
}
|
|
|
|
if adlen == 0 { // AD is an empty string
|
|
lfsr_gf56(CNT[:])
|
|
} else {
|
|
for adlen > 0 {
|
|
adlen = ad_encryption(&ad, s[:], k, adlen, CNT[:], 40, n, t)
|
|
}
|
|
}
|
|
|
|
if w&8 == 0 {
|
|
xlen = ad2msg_encryption(&mauth, CNT[:], s[:], k, t, 44, xlen)
|
|
} else if clen == 0 {
|
|
lfsr_gf56(CNT[:])
|
|
}
|
|
|
|
for xlen > 0 {
|
|
xlen = ad_encryption(&mauth, s[:], k, xlen, CNT[:], 44, n, t)
|
|
}
|
|
|
|
nonce_encryption(N, CNT[:], s[:], k, int(t), w)
|
|
|
|
// Tag generation
|
|
g8A(s[:], T[:])
|
|
|
|
// Tag verification
|
|
for i = 0; i < 16; i++ {
|
|
if T[i] != ((c[i:])[0]) {
|
|
return -1
|
|
}
|
|
}
|
|
|
|
return 0
|
|
}
|