vcinema/update_keywords_scores.py

76 lines
2.7 KiB
Python

from collections import OrderedDict
from progress.bar import IncrementalBar
import math
from concurrent.futures import ThreadPoolExecutor
from imdb_utils import IMDbUtils
from vcinema_utils import VCinemaUtils
# Page ID of https://wiki.jacknet.io/books/vcinema/page/keyword-scores
KEYWORD_SCORES_PAGE_ID = 23
def get_keyword_scores(viewings):
viewings_filtered_keyword = VCinemaUtils.filter_viewings(viewings, "keywords")
for keyword, viewings in viewings_filtered_keyword.items():
viewings_filtered_keyword[keyword] = {"vcinema_films": viewings}
min_vcinema_count = 2
min_imdb_count = 4
add_keyword_totals(viewings_filtered_keyword, min_vcinema_count)
add_keyword_scores(viewings_filtered_keyword, min_vcinema_count, min_imdb_count)
return viewings_filtered_keyword
def add_keyword_totals(keywords, min_vcinema_count):
keyword_count = len([keyword for keyword in keywords.keys() if len(keywords[keyword]['vcinema_films']) >= min_vcinema_count])
with IncrementalBar(message='%(percent).1f%% - %(eta)ds remaining', max=keyword_count, check_tty=False) as bar:
with ThreadPoolExecutor(6) as executor:
for keyword, data in keywords.items():
if len(data['vcinema_films']) >= min_vcinema_count:
executor.submit(add_keyword_total, keyword, keywords, bar)
def add_keyword_total(keyword, keywords, progress_bar=None):
keyword_total = IMDbUtils.get_keyword_count(keyword)
keywords[keyword]['total'] = keyword_total
if progress_bar is not None:
progress_bar.next()
def add_keyword_scores(keyword_data, min_vcinema_count, min_imdb_count):
for keyword in keyword_data.keys():
if 'total' in keyword_data[keyword]:
vcinema_count = len(keyword_data[keyword]['vcinema_films'])
total_count = keyword_data[keyword]['total']
if vcinema_count >= min_vcinema_count and total_count >= min_imdb_count:
score = vcinema_count / math.log(total_count)
keyword_data[keyword]['score'] = score
def build_page(keyword_data, minimum_score=1.0):
keyword_data = {k: v for k, v in keyword_data.items() if 'score' in v and v['score'] >= minimum_score}
keyword_data = OrderedDict(sorted(keyword_data.items(), key=lambda t: t[1]['score'], reverse=True))
table = "| Keyword | Number of VCinema Films | Total IMDb entries | Score |\n| - | - | - | - |"
for keyword, data in keyword_data.items():
table += "\n"
row_data = []
row_data.append(str(keyword))
row_data.append(str(len(data['vcinema_films'])))
row_data.append(str(data['total']))
row_data.append(str(round(data['score'], 3)))
table += " | ".join(row_data)
return table